BI²

Business Intelligence and
A Center of Excellence in Higher Education

Presented By: Christina Rouse

at

Ohio Association of Institutional Research

March 19, 2010
Presenter

Christina Rouse
Chief Architect
chris.rouse@incisiveanalytics.com
Mobile: 216 849-8237
Symptoms: Common Themes
Why is a BI Center of Excellence needed?

- Poor data quality
- Non-standard calculations
- Poor and inconsistent access to data
- Manual, laborious and untimely data manipulation
Data Quality State-of-the-Union
Survey: What is your data quality?

My organization thinks our data quality is?
 • Excellent, Good, OK, Poor

What is really the data quality?
 • Better Than Everyone Thinks
 • Worse Than Everyone Thinks
 • The Same As Everyone Thinks

What is the status of your data quality initiative?
 • No Plans
 • Under Construction
 • Design or Implementation Phase
 • Deployed
Since 2001, data quality has decreased

More organizations are aware of data quality issues

More data quality initiatives are being launched

Source: TDWI, Data Quality Survey, 2001 and 2005
Based on 647 respondents in 2001 and 750 in 2005
Data Quality
What’s the difference between reliability and validity?

- **Validity**
 - A data source value is true and is what it says it is. If a data element source is valid it is also reliable

- **Reliability**
 - A data source value consistently returns the same value which may or may not be valid. A reliable data source is not necessarily a valid data source
Need: A Common Statement

Your Institution:

- Desires comprehensive, campus-wide analytics to support decisions that:
 - Are proactive and focused at multiple management levels
 - Improve institutional performance and accountability
 - Establish repeatable compliance reports with ease
 - Enhance access and service for faculty and staff
 - Leverage technology assets for expanded access and service
 - Unify the digital campus

- Seeks advice on Business Intelligence tools
- Wants to explore available BI offerings from software vendors like SunGard Banner, PeopleSoft, Datatel and others
- Establish a business intelligence center of excellence with institution-wide governance
What is Business Intelligence? Isn't it the same as Data Warehousing?

Business Intelligence (BI) is the use of mathematical facts to improve business decisions. These facts typically focus on company performance across time and throughout the organization. BI is the use of a data warehouse.

Data Warehousing (DW) is the methodology and technology used to capture data from the company’s operational systems and then present the data in a meaningful way.

Business

'biz-n&s, -n&z
A usually commercial or mercantile activity engaged in as a means of livelihood

Intelligence

in-'te-l&-j&n(t)s
The ability to apply knowledge to manipulate one's environment or to think abstractly as measured by objective criteria (as tests)

DW is the technology. **BI** is the use of the technology to make better decisions that improve company performance.

Facts: Tuition, Lab Expenses, Facilities Costs, Enrollment Headcount by Course by Department by College, etc.
What is institutional intelligence?
Specific to Higher Education

• Academic Analytics
 – Reports
 – Analytics
 – Graphics
 – Projections

• With one…
 – Source of data
 – Calculation method
Institutional Intelligence

- A campus wide BI environment
- Built on world class BI tools
- Governed by an established council
BI Leverage

What does a BI solution enable us to do better?

- Know your student (and faculty) customer
 - Cross-offer
 - New student on-boarding
 - Retention
 - Loyalty

- More quickly respond to enrollment changes (i.e. enrollment management)
- Manage curricula to market demand
- Improve admission, registration and other process efficiencies
- Seek additional grants via better measurable objectives
- Make compliance reports routine; minimize time
- The process starts with **data** from many business sources
- **Data** is translated into **information** by adding business calculations and metrics
- Users (VP, Dean, etc.) look at **information** and turns it into **knowledge**
- This **knowledge** worker takes an action to improve operations
- Knowledge applied in context is **wisdom**
BI Strategy
Gaps, Strengths and Opportunities for Leverage

A comprehensive BI solution involves people, process, technology and data

- **People** – Create a BI Center of Excellence
 - Institutional research analysts
 - Information technology report writers
 - Financial analyst

- **Process** – Design a database that includes daily updates

- **Technology** – Microsoft, Business Objects, SAS, Cognos and many more

- **Data** – Turn data into information
 - Banner, PeopleSoft, Datatel, or homegrown transactional data
 - Institutional goals data
 - External sources like IPEDS, job market, voter registration, etc.
People: BI Center of Excellence
What is it? What does it do?

- Collection of people where the whole is greater than the sum of the parts
 - Institutional research analysts
 - Information technology report writers
 - Financial analysts
- Center of knowledge and understanding of institutional data
- Incubator of data into information, knowledge and ultimately wisdom
- Lead the culture of analytics!

- Create and publish executive dashboards
- Study the analytics of drivers and success
- Author operational reports
- Standardize reporting and data definitions
- Support “measurable objectives” in grant writing
- Produce IPEDS, State and other compliance reports
- Lead ad hoc research
- Organize the institution’s intelligence
Process: Data Warehouse
What is the best design?

- “One source of the truth”
- Star schema
 - Atomic level data
 - Conformed dimensions across stars
 - Single joins from fact tables to dimensions
 - Estimate 15 stars
- Move data once; update data at least daily
- Store data in business terms
P.I.T. Analysis of Course registrations

- By Student, Faculty
- By Course, Section
- By Campus
- By College of Course
- By Registration Status
- By Day in Term, Term
- By NCR Status
- Use a good modeling tool
- Adopt a naming scheme for databases, tables and columns
- Use surrogate keys
- Include the joins
- Keep model current
Q. If a star schema has 3 dimensions and one fact:
 - Class with 1000 rows
 - Time with 365 rows
 - Faculty with 2000 rows
 - Registration transactions fact table of 50 rows,

 • How many rows are returned in a query of select * with all dimensions joined?

A. 50
 • What else can you tell about the institution?
Data: Measures
Cumulative and Non-Cumulative

- Non-cumulative measures cannot be stored in the physical database; they must be calculated at the OLAP presentation point
- Non-cumulative measures typically have division, %, or are ratios like:
 - Completion Rate %
 - GPA
 - Retention Rate
Data: Classification
Data Type Determination

NOIR

- **Nominal** – Red, Yellow and Blue
 Just a name with no order or magnitude

- **Ordinal** – 1st, 2nd and 3rd
 An order, but no magnitude

- **Interval** – 1\textquoteleft, 2\textquoteleft and 3\textquoteleft
 An order, a magnitude but absolute zero

- **Ratio** – -2\degree, -1\degree, 0\degree, +1\degree, +2\degree C
 Below zero possibilities

Nominal and Ordinal data type elements are dimensions and Interval and Ratio data type elements are facts in the data model.
Data: Behavior Statements
Slowly Changing Dimensions

- Slowly Changing Dimensions:
 - (Type One), doesn’t preserve history
 - (Type Two), preserve a version of history
 - (Type Three), Hybrid of Type One and Two

- Users typically want a “Type Two” methodology of SCD
- A Type Two change writes a record with the new attribute information and preserves a record of the old dimensional data.
- Type Two changes let you preserve historical data.
- Implementing Type Two changes, after the fact, will require significant analysis and development.
- Type Two changes accurately partition history across time more effectively than other types.
- Because Type Two changes add records, they can significantly increase the database’s size.
Balanced Hierarchies
• All branches of the hierarchy descend to the same level, and each member’s logical parent is the level immediately above the member

Unbalanced Hierarchies
• Branches of the hierarchy descend to different levels. For example, an Organization dimension contains a member for each employee in a company

Ragged Hierarchies
• The logical parent member of at least one member is not in the level immediately above the member. This can cause branches of the hierarchy to descend to different levels.
Technology: Tool Options

What are the best tools for us?

<table>
<thead>
<tr>
<th>Data Modeling</th>
<th>Target Database</th>
<th>ETL (Extract, Transform & Load)</th>
<th>OLAP (On-Line Analytical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllFusion ERwin Data Modeler</td>
<td>SYBASE</td>
<td>INFORMatica</td>
<td>COGNOS</td>
</tr>
<tr>
<td>ORACLE</td>
<td>Ascential</td>
<td>ProClarity</td>
<td></td>
</tr>
<tr>
<td>Teradata</td>
<td>Business Objects</td>
<td>Business Objects</td>
<td></td>
</tr>
<tr>
<td>IBM DB2</td>
<td>SAS</td>
<td>SPSS</td>
<td></td>
</tr>
</tbody>
</table>

© Incisive Analytics LLC
Data: Subject Matter
What data are included in institutional intelligence?

<table>
<thead>
<tr>
<th>Transactional</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Employee</td>
<td>Financial</td>
<td>Grant</td>
<td>Alumni</td>
<td></td>
</tr>
<tr>
<td>• Prospects and Admissions</td>
<td>• Employee Foundation</td>
<td>• General Ledger</td>
<td>• Grant Management</td>
<td>• Gifts and Donations</td>
<td></td>
</tr>
<tr>
<td>• Student Course Registration</td>
<td>• Employee Application</td>
<td>• Accounts Receivable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prospect Financial Aid</td>
<td>• Employee Degree</td>
<td>• Budget Ledger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Student Financial Aid</td>
<td>• Employee Position</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Completions and Degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voter</td>
<td>Marketing</td>
<td>Economy</td>
<td></td>
</tr>
<tr>
<td>• Registration Trends</td>
<td>• Database America</td>
<td>• Consumer Price Index</td>
<td></td>
</tr>
<tr>
<td>• Voter volume</td>
<td>• Socioeconomic Profiles</td>
<td>• Job Market</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher Ed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance</td>
<td></td>
</tr>
<tr>
<td>• Federal IPEDS</td>
<td></td>
</tr>
<tr>
<td>• State Reporting</td>
<td></td>
</tr>
<tr>
<td>• Others</td>
<td></td>
</tr>
</tbody>
</table>
Dashboard and Reports
What are some examples?
Timeline

Implementation – Phases for Success

January 2010 – February 2011

Phase I
Student, 23 Weeks

Phase II
Employee, 10 Weeks

Phase III
Financial, 7 Weeks

Phase IV
Grants, 7 Weeks

Phase V
Compliance, 5 Weeks

Training
Adopt Vision and Knowledge Transfer